首页> 外文OA文献 >A Randomized Greedy Algorithm for Near-Optimal Sensor Scheduling in Large-Scale Sensor Networks
【2h】

A Randomized Greedy Algorithm for Near-Optimal Sensor Scheduling in Large-Scale Sensor Networks

机译:一种近似最优传感器调度的随机贪婪算法   大规模传感器网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the problem of scheduling sensors in a resource-constrained lineardynamical system, where the objective is to select a small subset of sensorsfrom a large network to perform the state estimation task. We formulate thisproblem as the maximization of a monotone set function under a matroidconstraint. We propose a randomized greedy algorithm that is significantlyfaster than state-of-the-art methods. By introducing the notion of curvaturewhich quantifies how close a function is to being submodular, we analyze theperformance of the proposed algorithm and find a bound on the expected meansquare error (MSE) of the estimator that uses the selected sensors in terms ofthe optimal MSE. Moreover, we derive a probabilistic bound on the curvature forthe scenario where{\color{black}{ the measurements are i.i.d. random vectorswith bounded $\ell_2$ norm.}} Simulation results demonstrate efficacy of therandomized greedy algorithm in a comparison with greedy and semidefiniteprogramming relaxation methods.
机译:我们研究了在资源受限的线性动力学系统中调度传感器的问题,该系统的目标是从大型网络中选择传感器的一小部分来执行状态估计任务。我们将此问题表述为拟阵约束下单调集函数的最大化。我们提出了一种随机贪婪算法,该算法比最新方法要快得多。通过引入曲率的概念来量化函数离子模的接近程度,我们分析了所提出算法的性能,并找到了使用最佳MSE的使用所选传感器的估计器的预期均方误差(MSE)的界限。此外,对于{\ color {black}}测量值为i.d的情形,我们推导了曲率的概率界。模拟结果证明了随机贪婪算法与贪婪算法和半定编程松弛方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号